Name \qquad Date \qquad

1. Write the following in exponential form (e.g., $100=10^{2}$).
a. $1000=$ \qquad
d. $100 \times 10=$ \qquad
b. $10 \times 10=$ \qquad
e. $1,000,000=$ \qquad
c. $100,000=$ \qquad
f. $10,000 \times 10=$ \qquad
2. Write the following in standard form (e.g., $4 \times 10^{2}=400$).
a. $4 \times 10^{3}=$ \qquad
e. $6.072 \times 10^{3}=$ \qquad
b. $64 \times 10^{4}=$ \qquad
f. $\quad 60.72 \times 10^{4}=$ \qquad
c. $5,300 \div 10^{2}=$ \qquad
g. $948 \div 10^{3}=$ \qquad
d. $5,300,000 \div 10^{3}=$ \qquad
h. $9.4 \div 10^{2}=$ \qquad
3. Complete the patterns.
a. $0.02 \quad 0.2$ \qquad 20 \qquad
\qquad
b. $3,400,000$

34,000 \qquad 3.4 \qquad
c. \qquad 8,570 \qquad $85.7 \quad 8.57$ \qquad
d. $4444440 \quad 44,400$ \qquad
\qquad
\qquad
e. \qquad $9.5950 \quad 95,000$ \qquad
\qquad
4. After a lesson on exponents, Tia went home and said to her mom, "I learned that 10^{4} is the same as $40,000.1$ She has made a mistake in her thinking. Use words, numbers, or a place value chart to help Tia correct her mistake.
5. Solve $247 \div 10^{2}$ and 247×10^{2}.
a. What is different about the two answers? Use words, numbers, or pictures to explain how the digits shift.
b. Based on the answers from the pair of expressions above, solve $247 \div 10^{3}$ and 247×10^{3}.

